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Turbulence in supersonic channel flow is studied using direct numerical simulation.
The ability of outer and inner scalings to collapse profiles of turbulent stresses onto
their incompressible counterparts is investigated. Such collapse is adequate with outer
scaling when sufficiently far from the wall, but not with inner scaling. Compressibility
effects on the turbulent stresses, their anisotropy, and their balance equations are
identified. A reduction in the near-wall pressure–strain, found responsible for the
changed Reynolds-stress profiles, is explained using a Green’s-function-based analysis
of the pressure field.

1. Introduction
Wall-bounded compressible turbulence occurs when aerospace vehicles fly at super-

sonic or hypersonic speeds, both in the external flows over the body and in the
engine inlet and combustor. The coupling between turbulence and state variables
is a problem of fundamental interest in such flows since the Mach number and
temperature changes are typically large. Early experimental evidence on compressible
shear flows is discussed by Bradshaw (1977), Fernholz & Finley (1976), and Kline,
Cantwell & Lilley (1982) while later experimental and numerical investigations are
reviewed by Lele (1994) and Smits & Dussauge (1996).

Supersonic channel flow allows a systematic study of wall-bounded turbulence
without other complicating features such as streamwise development, shocks, and
flow separation. Coleman, Kim & Moser (1995), by performing direct numerical
simulations (DNS) of channel flow between cold isothermal walls with Mach
numbers up to M = 3, found that Morkovin’s hypothesis, ‘the flow dynamics follows
an incompressible pattern’, generally holds. Huang, Coleman & Bradshaw (1995)
observed that the turbulent stresses scale with the wall shear stress, τw , and semi-
local scaling (to be discussed later) is useful. Lechner, Sesterhenn & Friedrich (2001)
reported a slight change in Reynolds stresses anisotropy at M = 1.5 without giving
an explanation.

Compressibility effects on the turbulent stresses are not well understood. In incom-
pressible channel flow, the assumption of uτ =

√
τw/ρ as the velocity scale, and

recognition of two length scales, the viscous scale, ν/uτ , and the half-width h, lead
to the well-known inner and outer scalings. Our first objective is to evaluate these
scalings in compressible flow where the density ρ and viscosity ν vary. The second
objective is to identify changes of turbulent stresses with Mach number.
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Case M Re Reτ

Lx1

h

Lx2

h

Lx3

h
Nx1 Nx2 Nx3 �x+

1 �x+
2min

�x+
2max

�x+
3

M0.3 0.3 2820 181 9.6 2 6 192 129 160 9.12 1.02 4.21 6.84
M1.5 1.5 3000 221 4π 2 4π/3 192 151 128 14.46 0.84 5.02 7.23
M3.0 3.0 6000 556 4π 2 4π/3 512 221 256 13.65 0.89 9.38 8.91
M3.5 3.5 11310 1030 6π 2 4π/3 512 301 256 37.89 1.27 13.35 16.85

Table 1. Flow and computational parameters.

2. Description of the DNS
The compressible Navier–Stokes equations are solved numerically using the

pressure–velocity–entropy formulation of Sesterhenn (2001). The mean pressure gra-
dient, dp̄/dx1 is replaced by a uniform body force f̄ 1. Both channel walls are kept
isothermal and are cooled at a temperature of Tw =500 K, so that the heat transfer
towards the walls allows supersonic fully developed flow. Periodic boundary conditions
are used in the stream- and spanwise directions. The compact fifth-order upwind
scheme of Adams & Shariff (1996) is used to discretize the hyperbolic (Euler)
terms, the compact sixth-order scheme of Lele (1992) for the molecular terms, and
a third-order ‘low-storage’ Runge–Kutta scheme of Williamson (1980) for the time
advancement. The numerical algorithm has been previously validated by Lechner
et al. (2001) whose results for an M = 1.5 case agree well with Coleman et al. (1995).
The mean mass flow rate is increased between cases so that the Mach number,
M = 0.3, 1.5, 3.0 and 3.5. These cases will be henceforth referred to as M0.3, M1.5,
M3.0 and M3.5. Here, M = uav/cw and Reynolds number Re= ρmuavh/µw . The bulk-

averaged density is defined as ρm =
∫ h

0
ρ dx2/h, and uav denotes the Reynolds (rather

than Favre) cross-sectionally averaged velocity. The speed of sound, cw , and viscosity,
µw , are computed at the constant wall temperature Tw . The friction Reynolds number
Reτ = ρwuτh/µw , with uτ =

√
τw/ρw , is a result of the simulations. Table 1 summarizes

the flow parameters, box sizes and numbers of grid points used in the different cases.
Equidistant grids are used in (x1, x3)-directions and clustering in the wall-normal
x2-direction.

Since Reτ also increases along with M , the compressible flow results are compared
with the incompressible channel flow data of Moser, Kim & Mansour (1999) at
Reτ = 180, 395 and 590, denoted by cases I1, I2 and I3, respectively. Note that the
Reτ values are similar for cases M0.3, M1.5 and I1, and for cases M3.0 and I3.
Compressibility effects originate mainly from the large change in fluid properties, ρ̄

and µ̄, caused by viscous heating, see figure 1(a). Figure 1(b) shows that, with the
Van Driest transformation,

ū+
1,V D =

∫ ū+
1

0

√
ρ̄/ρw dū1, (2.1)

the mean velocity profile tends towards log-law behaviour, see Coleman et al. (1995)
for details; however, there are Re-associated differences between cases. Smits &
Dussauge (1996) report that supersonic boundary layers with moderate pressure
gradients show good agreement with incompressible data when transformed according
to Van Driest as long as the low-Re extent of the inner layer is not too large.
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Figure 1. (a) Variation of mean density (symbols) and mean viscosity (lines). (b) Profiles
of the Van Driest-transformed mean velocity.
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Figure 2. Outer scaling of the turbulent stresses, ρ̄Rij : (a) shear stress, (b) streamwise stress.

3. The turbulent stress tensor
In this section, we study the turbulent stress tensor, ρ̄Rij = ρui

′′uj
′′, with ui

′′ denoting
the Favre fluctuation (u′

i denotes the corresponding Reynolds fluctuation).

3.1. Outer scaling

Figure 2 shows profiles of the shear and streamwise stresses using outer scaling, that
is, using τw and x2/h. Clearly, for sufficiently large x2/h, compressible and incom-
pressible cases collapse onto a universal profile. This conclusion holds for spanwise
and wall-normal components too. (We note that in this, and many other figures, the
M0.3 case and the I1 case with similar Reτ = 180 are practically indistinguishable.)

An explanation of the outer scaling follows after first integrating the ū1-equation
from the wall to obtain

µ

µw

∂u1
+

∂x+
2

− ρ̄R12

τw

= 1 − x2

h
, (3.1)

where correlations involving viscosity fluctuation, being small, are neglected. Equa-
tion (3.1) implies that, when x2/h is sufficiently large to allow neglect of the viscous
stress, ρ̄R12/τw is a linear function of x2/h. The viscous stresses are taken to be
negligible when x+

2 > 50 (equivalently, x2/h > 50/Reτ ) in incompressible flow so that,
with increasing Reτ , the region with outer scaling thickens. Thus, the shear stress in
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Figure 3. Streamwise turbulence, ρ̄R11: (a) against x+
2 , (b) against x∗
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Figure 4. Spanwise turbulence, ρ̄R33: (a) against x+
2 , (b) against x∗

2 .

case I3 with highest Reτ shows linear behaviour at the smallest distance, x2/h � 0.1.
However case M3.0, at similar Reτ = 560, shows linear behaviour only for x2/h > 0.3.
The temperature increases with increasing x2, µ correspondingly increases, and the
viscous stress in (3.1) remains important for a larger x2. When x2/h > 0.3, the mean
density is almost constant as seen in figure 1(a) and, variable density effects being
small, the correlation coefficient of ρu′′

1u
′′
2 is practically identical for all cases. From

this additional fact we conclude that ρ̄R11/τw and ρ̄R22/τw , and finally all Reynolds
stresses, tend to a universal dependence on x2/h sufficiently far from the wall.

3.2. Inner scaling

In the incompressible case, inner scaling involves normalization by τw and the use of
x+

2 = x2uτ/νw . Such scaling is shown in figure 3(a) and figure 4(a) for the streamwise
and spanwise components, respectively. The higher Reτ incompressible cases, I2 and
I3, although having profiles close to each other as expected, show an increase with
Reτ at large x+

2 . However, cases M1.5–3.5 differ from cases I1–I3 showing that an
inner length scale based on wall values is inapplicable.

In the semi-local scaling of Huang et al. (1995), while τw is still used for normaliza-
tion, x∗

2 replaces x+
2 . Here, x∗

2 = x2/δ
∗
ν with δ∗

ν = ν̄/u∗
τ and u∗

τ =
√

τw/ρ̄ , a definition
that uses the local viscosity and density. Figure 3(b) and figure 4(b) show that using
x∗

2 instead of x+
2 leads to an improvement; the peak values occur at similar x∗

2 in the
different cases. However, the peak amplitudes do not collapse. Furthermore, at large
x∗

2 , the compressible flow profiles are systematically lower relative to cases I2 and I3.
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Figure 5. Balance of ρ̄R11, normalized by τ 2
w/µ̄, with symbols representing incompressible

case I3 and lines case M3.0: (a) production, dissipation, and viscous diffusion, and (b) pressure
strain, turbulent diffusion, and mass flux variation.

We have considered the turbulence transport equations normalized with ρwu4
τ /νw ,

customary in the incompressible situation, as a function of y+, finding that case M3.0,
when compared with case I3 at similar Reτ , shows no tendency for collapse. Clearly, an
alternative inner scaling is required. Consider the turbulent production, P . Away from
the viscous layer, −ρ̄R12 = τw(1 − x2/h), while the mean shear is ∂ũ1/∂x2 � u∗

τ /κx2, so
that

P =
τ 2
w

µ̄κ

(
1

x∗
2

− 1

h∗

)
. (3.2)

Equation (3.2) implies that the Reynolds stress budget should be normalized with
τ 2
w/µ̄ and provides additional support for the semi-local coordinate, x∗

2 . The balance
of ρ̄R11 in figure 5(a) shows that the dominant terms in the near-wall region, namely
the production, dissipation and viscous diffusion, do not differ significantly between
cases I3 and M3.0. However, as shown by figure 5(b), the pressure–strain correlation,

Πij = p′s ′
ij = p′(∂u′′

i /∂xj + ∂u′′
j /∂xi)/2

differs significantly between cases. Since semi-local inner scaling is only a partial
improvement over wall-based scaling without giving complete collapse of the turbu-
lence balances, the turbulent stress profiles also do not collapse for incompressible
and compressible cases when using x∗

2 .
A heuristic explanation of why the local value, ρ̄, does not preserve inner scaling

follows from the fact that the pressure gradient, ∇p, in the momentum equation is
force at a distance. There is a non-local relation between pressure and fluid inertia.
Mathematically, inversion of the ∇2 operator in the pressure equation leads to a space
integral in the solution. Physically, ∇p at a point P involves momentum per unit
volume of the entire turbulent ‘eddy’ at P whose vertical extent can be estimated
using a two-point velocity correlation, taken here to be the wall-normal velocity
associated with ‘active’ turbulence, see figure 6(a). Label the two points where
u2(x1, x2, x3)u2(x1, x2 + y, x3), normalized by its maximum, drops below 0.1 as y−
and y+. Then,

ρe(x2) =
1

y+(x2) − y−(x2)

∫ y+(x2)

y−(x2)

ρ̄(y) dy

represents the effective density of the fluid volume that influences point P through
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∇p. Because of the sharp decrease of ρ̄ from its wall value followed by a gradual
change seen in figure 1(a), the effective density is lower than ρ̄ near the wall while, in
the outer region, ρe and ρ̄ are almost equal. This is illustrated in figure 6(b) for cases
M1.5 and M3.5, where ρe(x2) has been calculated by averaging over 20 independent
flow realizations. The difference between effective and local mean densities explains
why an inner scaling law for turbulence based on local ρ̄ fails.

3.3. Turbulence levels

Turbulence profiles in the incompressible case depend on the Reynolds number, Reτ .
Comparing cases I1–I3, for instance in figures 3(b) and 4(b), shows a general increase
of all three turbulence intensities with Reτ over the range covered by DNS. In super-
sonic channel flow, the Mach number, M , is also important. Another complication is
that the local values, M̄ , and Re∗

τ depend on x2 as shown in figure 7. Now, case M3.5
has a local M̄ profile similar to case M3.0 but the local Reynolds number, Re∗

τ , is
significantly larger. The turbulence intensities in case M3.5 are also generally larger,
a Reynolds number effect similar to that in the incompressible situation. Let us now
turn to compressibility effects. Cases M3.0 and M3.5 in figure 3(b) have peak values
larger than in case I3 (Reτ = 590). Since Re∗

τ at the corresponding x∗
2 is substantially

smaller than 590 this trend cannot be a Re-effect. Now, compare cases M3.0 and
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M0.3 and notice that, in the region 0 <x∗
2 < 40, the value of Re∗

τ is larger in case
M3.0; however, the spanwise intensity in figure 4(b) is somewhat smaller in that
region, again not a Re-effect. It appears that, when M increases, there is an additional
effect on near-wall turbulence: the spanwise and wall-normal components of ρ̄Rij are
generally smaller than corresponding values in incompressible flow, the streamwise
component is larger, and the shear component shows little change. The Reynolds
stress anisotropy defined by bij = ρ̄Rij /ρ̄Rkk − δij /3 is of interest. Foysi, Sarkar &
Friedrich (2003) compared case M3.0 with case I3 having similar Reτ at the wall
finding that, in the near-wall region, the normal stress anisotropies (b11, b22, and b33)
are larger in case M3.0, while the shear stress anisotropy, b12, is smaller.

The observed differences between the turbulent stresses can be explained based on
their transport equations. For instance, the streamwise balance in figure 5(a) shows
that the dominant terms do not differ significantly between cases M3.0 and I3, while
figure 5(b) shows a significant reduction in case M3.0 of the pressure–strain correlation
Π11, a sink term in the budget, leading to an increase of ρ̄R11/τw with respect to
case I3. In the spanwise balance, the pressure–strain term, Π33, the dominant source,
is less in the M3.0 case relative to case I3 in figure 8(b), leading to the observed
reduction of the spanwise component. The reduction in the wall-normal component
(not shown here) is also attributable to the reduction in Π22.

4. Pressure–strain correlation
Although a heuristic explanation for the failure of inner scaling was advanced

in § 3.2, a more quantitative explanation based on analysis of the pressure–strain
correlation can be constructed as follows.

4.1. Equation governing the pressure fluctuation

A starting point is to derive an equation for the pressure fluctuations that is valid for
both incompressible and compressible flow. Taking the divergence of the momentum
equation, using mass conservation, and, after some algebraic manipulation, we obtain
the following equation in channel flow:

∇2p′ = −ρ̄(u′′
i u

′′
j − u′′

i u
′′
j ),ij − 2ρ̄ũ1,2u

′′
2,1 + σ ′

ij,ij − 2ρ̄,2(u
′′
2u

′′
j − u′′

2u
′′
j ),j

A1 A2 V1 B1

− ρ̄,22

(
u′′2

2 − u′′2
2

)
− 2ũ1,2(ρ

′u′′
2),1 − (ρ ′u′′

i u
′′
j − ρ ′u′′

i u
′′
j ),ij − Dt tρ

′. (4.1)

B2 C1 C2 C3
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Note that the operator Dt t = ∂tt + 2ũj ∂jt + ũi ũj ∂ij is Galilean invariant. In incom-
pressible flow, the first two terms on the right-hand side of (4.1), labelled A1 (nonlinear
fluctuation), and A2 (mean shear), survive. In compressible flow, there are additional
terms, V1 (viscous), B1 (density gradient), B2 (density second-gradient), and the last
three terms involving the density fluctuation, C1, C2 and C3.

4.2. A Green’s-function-based solution for the pressure–strain term

The last term in (4.1), Dt tρ
′, leads to a convected, inhomogeneous wave equation for

the pressure in general. Here, we will neglect terms involving ρ ′/ρ̄ allowing (4.1) to be
interpreted as a Poisson equation for the pressure, and will validate this assumption
by comparison of the resulting analytical solution with DNS data.

A Green’s-function-based analysis of the Poisson equation for pressure is now per-
formed. The exact wall boundary condition for incompressible flow is ∂p′/∂x2 =
µ∂2u′

2/∂x2
2 . In the present case of compressible flow, the dilatation is small and,

consequently, the wall boundary condition is given by ∂p′/∂x2 � µw∂2u′
2/∂x2

2 . Denote
the right-hand side of (4.1) by ρ̄f ′ and Fourier-transform in the homogeneous (x1, x3)
coordinates, for example, p′(x1, x2, x3) → p̂(k1, x2, k3). After introducing (just in the
analysis, but not in the figures) a y-coordinate with origin at the channel centreline
and normalizing with the channel half-width h, the equation governing the pressure
fluctuation becomes

∂2p̂

∂y2
−

(
k2

1 + k2
3

)
p̂ = ρ̄f̂ with

∂p̂

∂y

∣∣∣∣
y=±1

= µw

∂2û2

∂y2

∣∣∣∣
y=±1

. (4.2)

The Green’s function, Ĝ(k, y; y ′) with k =
√

k2
1 + k2

3 is the solution of the above equa-

tion with ρ̄f̂ replaced by the point source, δ(y − y ′). We derive the Green’s function,
Ĝ(k, y; y ′), for the homogeneous boundary condition, (∂p/∂y)w =0, using standard
methods and find that it is as given by equation (7) of Kim (1989), and also include
an additional contribution from the boundary, (4.4) below. The solution of (4.2) is

p̂(k1, k3, y) =

∫ 1

−1

Ĝ(k, y; y ′)ρ̄(y ′)f̂ (k1, k3; y ′) dy ′ + B̂(k, y) (4.3)

where B̂ is given by

B̂ =
∂p̂/∂y|y=1 cosh(k(1 + y)) − ∂p̂/∂y|y=−1 cosh(k(1 − y))

k sinh 2k
. (4.4)

Inverse Fourier transform (4.3) to obtain the pressure in physical space,

p′(x1, y, x3) =

∫ 1

−1

ρ̄(y ′)G ∗ f ′(x1, y, x3; y ′) dy ′ + B ′(x1, y, x3) (4.5)

where the convolution G ∗ f ′ is the inverse Fourier transform of Ĝf̂ . From (4.5), it
follows that the pressure–strain term is given by

Πij (y) =

∫ 1

−1

ρ̄(y ′)G ∗ f ′(x1, y, x3; y ′)s ′
ij dy ′ + B ′s ′

ij . (4.6)

The main result of the Green’s function analysis, (4.6), makes precise the non-local
effect of ρ̄ on the pressure–strain correlation. It also helps explain the observed
reduction of the pressure–strain term. The fluid in the interior is hotter than that at
the cold isothermal walls so that ρ̄(y ′) is smaller than the wall value ρw and, according
to (4.6), Πij is smaller than the corresponding incompressible value.
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Figure 9. (a) Comparison of the DNS data and (4.6) for the pressure–strain correlation.
(b) Symbols illustrate the effect of mean density on Π11. Contribution of different source
terms, ρ̄f ′, to (4.6) in the case of Π11 are shown by lines for case M1.5.

The quantity G ∗ f ′(x1, y, x3; y ′)s ′
ij , a function of y and y ′, is obtained numerically

by Reynolds-averaging the instantaneous values of G ∗ f ′. Figure 9(a) shows a
comparison of the analytical solution, (4.6), and the DNS data for cases M0.3 and
M1.5. The overall agreement is very good, confirming our ansatz that the variable-
density extension of the Poisson equation is sufficient for obtaining the pressure–strain
term. This is not true in general; in the high-speed shear layer (negligible mean density
variation), Pantano & Sarkar (2002) show that the wave operator and consequent
impact of finite-time decorrelation of turbulence helps explain the reduction of the
pressure–strain correlation in that flow. In channel flow, acoustic contributions lead
to a deviation of r.m.s. pressure fluctuations in the outer layer relative to the Green’s
solution but without affecting Πij . In order to test that the variation in ρ̄ is the main
cause of the changed pressure–strain correlation, we take the DNS velocity field of
case M1.5 and compute the right-hand side of (4.6) with constant ρw instead of the
true ρ̄(y ′) to obtain Π11. The fact that the result (squares in figure 9b) compares well
with the quasi-incompressible M0.3 case (triangles) in the region y+ > 30 confirms
that the reduction in ρ̄ with respect to ρw is the key to the observed reduction of Πij

in supersonic channel flow. There is an additional change in the region 10 <x∗
2 < 30,

presumably because of a difference between the two cases with respect to the velocity
derivatives appearing on the right-hand side of (4.6). The right-hand side of (4.6) is
evaluated separately with the different sources and plotted as lines in figure 9(b) for
Π11 and case M1.5 and the nonlinear term, A1, is found to be dominant.

5. Concluding remarks
Turbulent stresses, ρ̄Rij , in supersonic channel flow with cooled isothermal walls

are investigated using DNS with M up to 3.5 and Reτ up to 1030, compared with
incompressible cases, and found to be principally affected by mean property variation,
namely the decrease of the mean density and increase of the mean viscosity from wall
values. Conventional outer scaling, ρ̄Rij /τw versus x2/h, collapses all cases considered
here in a region sufficiently far from the wall, approximately x2/h > 0.35. Inner scaling
with x+

2 fails. Although using x∗
2 , where local ρ̄ replaces the wall value, gives better

performance, the improvement is only partial because the ∇p term in the momentum
equation brings in a non-local dependence on density.
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There is a Reynolds number effect in the region x∗
2 > 40 because Re∗

τ , based on local
properties, has a value smaller than the wall value leading to a reduction in turbulence
levels relative to those in incompressible flow at the same Reτ . An additional effect on
turbulence in the region of sharp density variation, x∗

2 < 40 (approximately x2/h < 0.15
in the DNS cases), is linked to reduced pressure–strain correlation, Πij . A variable-
density ansatz, neglecting wave-propagation effects, leads to a simplified Green’s
function solution for the pressure that involves integration over a fluid volume. The
effective density of this fluid volume is reduced relative to the incompressible case
leading to the decrease of Πij and consequent increase in turbulence anisotropy. The
analytical solution for Πij agrees well with DNS data. Given the importance of mean
density variation, thermal boundary conditions different from those considered here
may lead to different changes in the turbulent stresses.

S. Sarkar thanks the Von Humboldt Foundation for financial support.
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